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Introduction

In the perhaps vain hope that the following may be read, at least in part, 
by somebody from outside the mathematical community, we begin by 
making a few general remarks about mathematics, and after that, about 
the area of mathematics to which the following belongs. Only then, and 
with somewhat less pathos, do we become specific and turn to the 
content of the present paper.

Let us then assert, with a slight reformulation of a definition in the 
fascinating book »The Mathematical Experience« by Davis and Hersh 
([D&H]) that mathematics is the science of spaces and numbers. In rather 
simple terms, and in analogy with everyday life, one defines objects, and 
lays down rules according to which one may manipulate with, or oper­
ate upon, these. (Or, the analogy is to a property of an object which was 
defined in analogy with everyday life. Etc.). Through logical deduction 
one then tries to reveal deep and non-obvious properties of these crea­
tions. One develops tools for the investigation, one invents (or, as many 
are inclined to say, discovers) new models, and one classifies, calculates 
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on, solves problems on, dissects, welds together, and even sometimes 
performs experiments on, these structures. Led by an intuition founded 
on logic, and in the firm belief that abstraction goes in the direction of 
simplicity, clarity, and verity, theories of great intricacy and beauty are 
created. Included among the objects of mathematical interest have al­
ways been those which at a given time have been considered to corre­
spond to »reality«, but mathematics is much richer. At the same time it 
should be mentioned that to many mathematicians, their objects are real 
and have as much right to be called such, as more down to earth funda­
mentals.

The area of mathematics to which the following belongs is the repre­
sentation theory of semi-simple Lie groups.

A typical way in which a Lie group emerges is if one has a set M 
carrying, or equipped with, a certain structure (e.g. a differential equa­
tion on [R11). The group of maps of M onto M that preserve this structure 
is then often a Lie group. Closely related to this is the occurrence of 
symmetry groups in physics. The Poincaré group is, for instance, the 
group of causality (and scale) preserving transformations of Minkowski 
space. Another interesting example is the conformal group SU(2,2). In 
fact, the investigations of Segal into the notions of time and causality that 
led him to propose the conformal group as a possible fundamental sym­
metry group ([S], see also [S,J,0,P,&S] and references cited therein) was 
what motivated us to persue the kind of representation theory presented 
below.

Specifically, we are concerned with representations living in spaces of 
vector valued holomorphic functions on a hermitian symmetric space f/1 
of the non-compact type. The property of holomorphy is closely related 
to the physical concept of positivity of the energy. For simplicity assume 
that is a tube domain; £/ — IRn + iC+, where C+ is an open proper 
convex cone in IRn. Then fRn is the Shilov boundary of £/ and in the 
regular (generic) case the spaces of holomorphic functions that carry the 
unitary representations of the group G of holomorphic transformations 
of &, are Fourier-Laplace transforms of spaces of functions living on 
C+.

The current article deals with the subspace structure of such represen­
tations, also outside the realm of unitarity. Chapter 1 is mainly con­
cerned with invariant subspaces defined by covariant differential 
operators. Let us take time here to stress that even though the formula­
tion is infinitesimal, one can always quite easily integrate to an appropri­
ate covering group of G.
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We describe in Section 1.2 what we call the basic covariant differential 
operators on Ç&, namely those which originate or terminate in scalar 
modules. In Section 1.3 we indicate how one can approach the general 
situation by means of these results, and finally Section 1.4 is concerned 
with the conformal group, where the analysis can be brought to a full 
conclusion. At the same time a principle, which we believe will be 
fundamental for the further investigations, is introduced.

Chapter 2 deals with irreducible mixtures of unitarizable modules. 
Through some simple examples, two different situations are presented 
where one, in a natural way, encounters such a phenomenon. The first 
circumstance is with representations which, when restricted to a maxi­
mal parabolic subgroup, decompose into a finite sum of irreducibles, and 
the other occurs when a hermitian symmetric space is embedded com­
patibly into a bigger one. It is remarkable how rich the structures are that 
result from such simple phenomena.

1. Covariant differential operators

1.1. Fundamentals
Let g denote the Lie algebra of the group of holomorphic transformations 
of an irreducible hermitian symmetric space *3).  It is well-known that g is 
a simple Lie algebra over IR and that there are compact Cartan subalge­
bras. Specifically, let g = fa + p be a Cartan decomposition of g. Then fe 
has a one-dimensional center q. Let h0 denote one of the two elements of 
r| whose eigenvalues on pcare ± i, and let p+ and p~ denote the +i and —i 
eigenspace, respectively, for this fixed element. Let fci = |fe,fe] denote the 
semi-simple part of k and let t be a maximal abelian subalgebra offc. Then 
fa = fe] © IR • h0, f) = (tjCfai) © IR • h0, (tjnfe])c is a Cartan subalgebra of 
fc]C, and fjC is a Cartan subalgebra of gc.

The sets of compact and non-compact roots of gc relative to fjc are 
denoted Ac and An, respectively; A = Ac U An. We choose an ordering 
of A such that p+ corresponds to A„. Throughout ß denotes the unique 
simple root in A „ and Q denotes one half of the sum of the positive roots. 
For y E A let H., denote the unique element of if) A [(sC)\ (SC)~Y] for 
which y(HY) = 2. Finally, following [R&V] we let yr denote the highest 
root. Then yr E A„ and Hy [ïjdfcj )c.

If Ao is a dominant integral weight of fq and ifk E IR we denote by A = 
(A0,X) the linear functional on fjc given by

= Ao, A(HVr) = X. (1.1.1)
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Such a A determines an irreducible finite-dimensional W(kC)-module 
which we, for convenience, denote by VT. Here t = ta denotes the repre­
sentation corresponding to A of the connected simply connected Lie 
group K with Lie algebra k. Further, let

M(Vt)= ^(gc) ® VT (1.1.2)
^(kc©p+)

denote the generalized Verma module of highest weight A, and let MA 
denote the Verma module of which M(VX) is a quotient.

In what follows, we choose to represent our Hermitian symmetric 
space ® as a bounded domain in p~. Consider an (irreducible) finite­
dimensional ^/(kC)-module Vx. Through the process of holomorphic in­
duction, the space ^(Vx) of VT-valued polynomials on p~ becomes a 
f/(gC)-module consisting of k- (or K-) finite vectors. We maintain the 
notation ^(Vx) for this module and let dUx denote the corresponding 
representation of gc. Explicitly, let

(ô(z0)f) (z) = I t=0 f(z + tz0)

for Zq,z E p~, and f E C°°(p_). Then, for p E ^°(VX) we have ([J&V; II]):

(dUT(x)f) (z) = - (ô(x)f) (z) for x E p , (1.1.3)
(dUT(x)f) (z) = dr(x)f(z) — (ô([x,z])f) (z) for x E kc, and
(dUx(x)f) (z) = dx([x,z])f(z) - l/2(0([[x,z],z])f) (z) for x E p+.

It follows from these formulas (especially the first) that the space

W(T) = Span{dUT (u) • v | v E VT, u E f/(gc)} (1.1.4)

is contained in any invariant subspace. In particular, W(t) is irreducible.
Let VT and VT be finite-dimensional (irreducible) ^/(kc)-modules, and 

let D be a constant coefficient holomorphic differential operator on p_ 
with values in Hom(Vx,VX|).

Definition 1.1.5. D: c^(Vx) -^^9VX]) is covariant iff
Vx E gc: DdUx(x) = dUT] (x)D.

Along withé^(VT) we consider the space (Vf) of holomorphic constant 
coefficient differential operators on p~ with values in the contragredient 
module, VT'= Vf, to Vx. For p E ^(VT) and q E <f(Vf) let

(q.p) = (q( ),?(•)) (0). (1.1.6)
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This bilinear pairing clearly places ^(VT) and <^(VT-) in duality and as a 
result, <^(VT') becomes a <^f(sc)-module. The following result is straight­
forward. See [H&J].

Proposition 1.1.7. As -modules,
= <r(v€) = m(vt.).

The following is proved in [J V].

Proposition 1.1.8. A homomorphism cp: M(VX1') —» M(VT-) gives rise, by 
duality, to a covariant differential operator Dq,: ^(VT) —» é^(VTi), and con­
versely.

Through the results of Bernstein, Gelfand, and Gelfand [B,G,&G] this 
proposition yields a condition (»condition (A)«) which must be satisfied 
in order that there may be a covariant differential operator. This obser­
vation was crucial in the determination of the full set of unitarizable 
highest weight modules [JIV] (see also [JU] and [Jill]):

For Ao fixed it is known through the results of Harish-Chandra [H-C] 
that the modules W(t) = W(t) (X) are unitarizable for X sufficiently nega­
tive. Due to the polynomial behavior, as a function ofX, of the restriction 
of the hermitian form to finite-dimensional subspaces of ^(VT) (where 
VT, as a vector space, is independent of X), it follows that the first X = Xa 
where the hermitian form becomes degenerate (»the first possible place 
of non-unitarity« - though of course a place at which there is unitarity) is 
a place where W(t) (XJ T M(Vt). It follows that the annihilator W° (t) of 
W(t) is non-trivial. Hence, there is a covariant differential operator or, 
equivalently, »condition (A)« must be satisfied. The point X] is then 
easily determined through a diagrammatic presentation of described 
in [JIV]. Furthermore, by looking at the first X = Xo where there is a first 
order covariant differential operator (»the last possible place of unitari­
ty«; QJIII]) and by paying attention to the exact forms of the 
homomorphisms at Xo and Xls one may in fact determine the full set of 
points above X! at which there is unitarity. In particular, Xo is a such. The 
complete proof also relies on the results in [K&V], [R&V], and [W]. (A 
different proof has been given in [E, H, & WJ).

Let I be an invariant-subspace; W(t) C I C M(t), and assume that all 
inclusions are proper. The annihilator 1° is then non-trivial, and it makes 
sense to talk about the lowest order elements in 1°. These elements must 
be annihilated by p+ and it follows that there is at least one homomor- 
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phism into^(VT)' whose image is contained in 1°. In case 1° is a union of 
such images of homomorphisms, the description by covariant differen­
tial operator is then complete. Furthermore, the fa-types of I can be 
determined as those that are dual to »the fa-types not contained in I0«, and 
the fa-types off1 can be computed essentially just from the knowledge of 
the fa-types of modules of the forme^fVy). One must examine, though, 
exactly how the images overlap.

However, it may happen that 1° is not completely covered by the 
images of homomorphisms. An example of this phenomenon is given in 
[B&C], and there an example of a reducible socle is also furnished. Some 
other peculiarities are exemplified in [JV]. All the same, it is clear that it 
is of importance to know as much about covariant differential operators 
as possible.

1.2. Basic covariant differential operators
By a scalar module we mean a module M(VT) for which dim VT = 1 or, 
equivalently; t = t(0,À). In this section we quote the results of [JV] 
concerning the set of homomorphisms originating from, or terminating 
in, scalar modules.

Let yi = ß, Ya,•••Ar be a maximal set of orthogonal roots in A*,  
constructed so that Yi is the element in A {Yi » * - • » Yi-i}1 with the smallest 
height; i = 2,...,r. Let ôj = Yi + ••• +Yi i = l,---,r.

Proposition 1.2.1. ([Smd]). The set of highest weights of the irreducible 
submodules of the kc-module^(p~>) are

{-iiôi-------irôr I (ii,...,ir) E (Z+)r).
There are no multiplicities.

Let p denote the dimension of an »off-diagonal« root space in g for a 
maximal abelian subalgebra a of p (cf. [R&V; (2.2.2)]), and let Xs = 
-(s-1) ■ p/2 ; s=l,...,r.

Proposition 1.2.2.
a) If there is a non-trivial homomorphism

M(V(„A)^|1A)^ M(V(W))
then at most one is is different from 0.

b) There is a non-zero homomorphism
M(V((U)_nôs) -> M(V((U))

exactly when Å, = Xs + (n— 1) where Às is given as above and n G N.
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Let CO] be the Weyl group element that satisfies

<o,(ß) = y,. ; a), (At) = A” (1.2.3)

Let

?i = æi(Yi) ; i=l,...,r. (1.2.4)

Proposition 1.2.5. There exists a non-zero homomorphism M(V(0>x)) —> 
M(Vt) exactly when T = (0,X) + nœ1(ô1) for some n G N, i G {l,...r} 
and X = X, — n — p(Yi)- The homomorphism is unique.

1.3. The general case on Ffi ; an approach
Whereas the Jantzen-Zuckerman translation functor itself, when applied 
to the results of the previous chapter, does not quite yield the detailed 
information that we are seeking about general M(VT)’s, it is still natural 
to apply the idea of tensoring with finite-dimensional representations 
along the lines of ([V; Lemma 4.5.9]) to the present situation. As we shall 
see, it is in fact possible, by applying such ideas to the dual modules, to 
obtain a tool which, in particular for some of the classical groups, is 
remarkably powerful.

Let T = 't(Ao.X) be fixed, let X3 be determined by (A0',X3) (Hß) = 0, and 
choose X4 > X3 such that X4—X3 is an integer. Then (A0',X4) is the highest 
weight of an irreducible finite-dimensional representation F(A0',X4) of gc. 
Observe the following simple facts:

Lemma 1.3.1. a) For the dual module F'^offo we have

F'(A0',X4) - W(T]), (1.3.2)

where x^ = t(AoA3_m and W(T]) by (1.1.4).
b) The K-type t2 = which is annihilated by p+ in W(i]) satisfies

A2 = (Ao A4) = —w(Ao A4) (1.3.3)

where co is the Weyl group element which maps the negative Weyl chamber onto 
the positive, and Aq is a dominant integral weight ofk[.
c) t' is of highest weight fAo',X') with

V = -(AoAXHp). (1.3.4)

Proof, a) It is obvious that F(A0',X4) is the irreducible quotient of 
M(V(A()'x4)) and hence it follows by Proposition 1.1.7 and (1.1.4) that 
(1.3.2) holds with a Tj of the form Ti=T(a0,x) for some X. Let CD] be the 
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Weyl group element that satisfies (1.2.3). Then clearly (Ag,X) = 
— C0i(Ag ,X4). Hence X = (Ag,X) (HY ) = — (Ag ,X4) (Hß) = — (X4—X3).

V V

b) It is obvious that A2 = — cd(A0',X4), and this equals (Ag',X) for some X. 
What needs to be proved is that X = X4. This, however, follows by 
observing that co(yr) = —yr since yr is the highest root.
c) This follows as in a). Q.E.D.

As ^(fc] c)-modules, V(A()iX) = V(Ao0). Hence, by Lemma 1.3.1, the elements 
of W(Ti) may be considered as taking values in V/. We denote the 
duality by (.,.) and observe that we thereby may associate, to any p E 
^(VT') and q E W(xt), a C-valued polynomial

(p,q) (z) = (p(z),q(z)) (pointwise) (1.3.5)

Proposition 1.3.6. Let p E^(VX'), q E W(T]), and let x E gc.
Then

(dUT-(x)p,q) + (p,dUT](x)q) = dU(0i_x_x4+k3) (x)(p,q).

Proof. Let h0 denote the element of the center of à as in section 1.1. Since 
O)i preserves the set of positive non-compact roots, O)i(h0) = h0. Equation 
(1.3.7) now follows from (1.1.3) together with the observation that 
dT'(hg) on Vf is given by -V-f C0i (A0,X) (h0) = - V^T(A0,X)(h0), 
whereas dig (h0) on VT is given by xZ-4 (A0,X3—X4) (h0). Q.E.D.

Let VTi denote the K-type in W(tf) which is annihilated by p+.

Corollary 1.3.8. Let p E W(x') and let q E VTz. Then

(p,q) = È d U(0)_x_X4+X3)(Ui) (Vi,qi)

for some elements U!,...,un E7/(p+), V],...,vn E vt3 and ql5...,qn E VT?.

Proof By (1.1.4), it suffices to take p of the form dUf(u)-v for u E ^(gC) 
and v E Vy. Since 7/(gC) = 7Z(p+)^/(p^)^(feC) by Poincaré-Birkhoff-Witt, 
we may assume that u E <^/(p+). Thus, the statement follows directly 
from Proposition 1.3.6. Q.E.D.

To apply this, observe that by Proposition 1.2.2 and Proposition 1.1.7 
there are certain values ofX0 at which there is a finite number of invariant 
subspaces R ; i = 1,... , of -■^(V(0>y,)). These are given as the kernels of 
covariant differential operators. Moreover, since there are no multi­
plicities at this level, for each I) there is an n and a Ô, such that, in the 
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terminology of Proposition 1.2.1, the k-types of If exactly are those 
whose contragredient representation does not contain — nôj . That is, if 
the contragredient k-type is of the form (0, — k0) — Sf=i njôi? then S[=i nj < 
n. Equivalently, the k-types are exactly those which are not in the ideal 
generated by the polynomials in the k-type generated by p20 . (By choos­
ing the Yi's of Proposition 1.2.1 differently we could of course avoid 
having to go to the dual picture.)

It follows by Proposition 1.3.6 that for each If^,

{p e ^(VT.) I Vq e W(t,): (p,q) e U.} (1.3.9)

is an invariant subspace (Xo = —À,—X4+X3). Further, if the space

= Span{ (v,q(z)) | v G VT-, q G VTJ (1.3.10) 

(still, X.Q = —X —X4+X.3) is contained in Ifo for some i, then by Corollary 
1.3.8.

{(p(z),q(z)) I p£ W(T') , q F VJ (1.3.11)

is also contained in 1^. Since Ifo as a set of k-types is equal to those that do 
not occur in a certain ideal, it is clear that W(r') cannot equal the full set 
éP(VT') since we can choose p0 G^(VT') with coordinate functions in the 
mentioned ideal, and then (p0(z),q(z)) If .

We shall give an example of how to use the last observation. First 
observe that by Lemma 1.3.1, for k G K,

(U(o, —X—X4-FX3) (k) (v,q(-))) (z)
= (x'(k)v,T1(k)q(k“1z)) = (x'(k)v,(x2(k)q) (z)),

i.e. the K-types ofcA are contained in t' ® t2.
We now specialize to Sp(n, IR). Assertions about VT^ analogous to the 

one below can also be made for SU(p,q) and for »most« of the finite­
dimensional representations of SO*(2n).  Also observe that the following 
remark in fact itself deals with a significant subset of the modules that are 
the target of this chapter:

Let g = sp(n, IR). Based on the imbedding of Sp(n, IR) into SU(n,n) we 
choose the following conventional realization of g according to which

k = {(? -A) 1 h = h*  G M(n, C)},

P" = {(? 8)1 z = £z G M(n, C)}, and

P+ = {(°o w\
0) 1 w - cw G M(n, C)}.
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Let Tt and r2 be as in Lemma 1.3.1.

Lemma 1.3.13. For v G VT] the prescription

cpv: z —> Ti(z_1)v

defines a VT -valued polynomial which belongs to Vxv

Proof. Observe that in the present situation, T, = i2. Since t2 corresponds 
to the highest weight of a finite dimensional^<(øc)-module, it is clear that 
it is polynomial. For u G U(n) we have

T1(u)Ti((tUZu)“1)v = T1(z“1)T1(tU_1)v,
hence it is clear that tpv transforms according to t2. Finally observe that for 
X = (g S) e P+,

[x,z] = (âz y, and [[x,z],z] = | _2ZXZ §].

Hence, by (1.1.3)

(dUT) (x)cpv) (z) — dij (xz)Ti (z_1)v — 16 dx1(2xz)T] (z_1)v = 0. Q.E.D.

Let e15...,en denote the standard orthonormal basis of IRn.
Then

At = {e; —ej J 1 < i < j < n), and
At, = {e.+e, I 1 S i S j < n).

A = (XBX2,.. ,,Xn) is k]-dominant and integral if and only if Xt > ... > Xn and 
Xj—Xj G IL. Q — (n,n—1,...,1), and X = Xt.

Example. Consider Sp(4, IR) and let A = (X,X,X— 1,X—2). We put X3 = X4 and 
observe that

Tj = (0,0,-1,-2), and x2 = (2,1,0,0).

Tensor products are computed by means of the Littlewood-Richardson 
rule (see e.g. [Jms]) which also gives the full solution to Ta ® (?) = Tb. To 
begin with, then, we observe that according to (1.3.12) and Proposition 
1.2.1, the possible fa-types of._/_x, are (—X, —X, —X, —X) ® (4,2,0,0) and 
(—X, —X, —X, —X) ® (3,3,0,0). Since, if e denotes the highest weight vector 
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for t2, (e,Ti(z_1)e) = (e,T2(z)e) is a highest weight vector as a C-valued 
polynomial, it follows that the first of these does occur. Further, it is 
easy to see that the corresponding set of polynomials does not exhaust 

Hence both of these types occur.
Now, the smallest X at which a sequence of elements from At can 

satisfy condition (A) for any pair (-,A + q) is evidently X = —3, corre­
sponding to {e3+e4}. However, this does not correspond to a highest 
weight of p_ ® VT (cf. the proof of Proposition 7.3 in [Jill]). It is also 
straightforward to see that at \ — — 5/2 there can be no sequence satisfying 
condition (A) for a pair (Aj + q,A+q) with A! tq-dominant. We will in this 
example study the values X = — 2, — 3/2, — 1, —16, and 0. Note that the 
value of p in Proposition 2.2 is 1 for sp(n, IR).

Â = —2: Consider the imbedding of sp(4, IR) into sp(5, IR) for which, if 
e!,...,e5 is a basis of IR5 as above, the space p+ for sp(4, IR) is contained in 
the p+ for sp(5, IR), and corresponds to the roots ej +ej with 2 < i,j. Let A 
= (X,X,X,X—1,X—2) (X = —2) and proceed with sp(5, IR): It follows from 
Proposition 1.2.2 and the remarks following (1.3.11) that W(x’) cannot 
equal the full set 6^(VT'). The invariant subspace I[ to be used for this 
argument is, as a space of polynomials, a complement to the ideal gen­
erated by the polynomial representation contragredient to 
(—2,—2,—2,—2,—2). ((—2,—2,—2,—2,—2) is, in the language of Pro­
position 1.2.1, equal to —05 and corresponds to the one-dimensional 
representation space C • det z. — 04 = (0, —2, —2, —2, —2) corresponds to 
4x4 minors of z, etc.) We have that (2,1,0,0,0) ® (2,2,2,1,0) contains 
(2,2,2,2,2) and it is, anyway, straightforward to see that the only pos­
sible choice of a sequence of elements of A^ satisfying condition (A) for a 
pair (Ai + q,A+q) has Aj = (—2,—2,—2,—2,—2) ® (0,-1,—2, —2,—2). 
Finally, since the highest weight vector in p_ ® p~ ® VT corresponding to 
this A] actually only lives on the sp(4, IR) above, it follows that we do have 
a non-zero homomorphism

M(V(_3>_4,_4>_4)) M(Vt),

and there can only be one such since Aj has multiplicity one in 7/(p”) ® 
VT.

Â = —J6: This may be treated analogously by using the ideal generated 
by the polynomial representation contragredient to (0, —2, —2, —2, —2) 
(4X4 minors). But there is no need to pass to sp(5, IR); (—2,—2,—2,—2) 
for sp(4, IR) can also be used (then it is just the determinant). However, 
this is also a point at which a first order differential operator exists by 
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Proposition 1.6 in [JVJ. Specifically, X = e2 + e3. Moreover, it is easy to 
see that the corresponding homomorphism is the only possible.

Â = —1: It follows from Proposition 1.5 in |JV] (or [B,G,&G]), by trial 
and error, that there can be no homomorphisms for this value.

Â = —1/2: By looking at the ideal generated by the polynomials in the fc- 
type whose contragredient is (—4,—4,—4,—4) (= — 204) it follows that 
W(t') 4=^(Vt'). Moreover, one can see that the fe-type At = (V2, V2, !/2, V2) 
® (4,4,3,2) does not belong to W(i') and one can find a sequence of 
elements of A„ satisfying condition (A) for the pair (A/Tq, A + q). How­
ever, there are other sequences also satisfying this condition but corre­
sponding to lower order differential operators. In fact, there is a first 
order differential operator corresponding to X = ei + e3. This phenome­
non seems to be quite typical: When the method fails to give more 
information than W(t') T ^(Vt‘) (which just implies the existence of 
some covariant differential operator) one can usually quite easily establish 
the existence of the lowest order operator and, more generally, obtain a 
sequence of differential operators of lowest possible degree. The present 
situation furnishes an example of this: There is a system of non-zero 
homomorphisms

M(V(_i/2_3,_i/2_4,_i/2_4,_t/2_4)) M(V(_i/2_2,_i/2_3,-1/2-4,-1/2-4))

M(V(-i/2_i,_i/2_3,_i/2_3,_i/2_4))

M(V(_i/2, _ i/2_ 1, _i/2_ j -i/2_3)) M (V(_i/2, _i/2, -1/2-1, _ 1/2-2)) •

Of these, all but q>3 correspond to first order. The existence of cp3 follows 
along the lines of the cases X = —% and X = —2. Finally, by looking at the 
images of the various homomorphisms and observing that everywhere 
there is multiplicity one, it is easy to conclude that q>5 O <p4 , q>5 O q>4 0 q3 , 
cp5 0 cp4 0 q3 O cp2 » and (p5 O q>4 O q>3 0 q)2 0 Ti all are non-zero and that 
they, along with (p5, constitute the full set of homomorphisms into 
M(Vt).

Â = 0: There is a sequence of non-zero homomorphisms

M(V(0,_2,_3,_4)) M(V(O,o,-l,-2))-

The existence of qq and cp3 follows as above, and cp2 corresponds to a first 
order operator. It might seem that there could be two distinct 
homomorphisms at the level of qq, but it follows easily from Proposition
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1.5 in UV] that M(V(_3 _4 _5 _5)) is irreducible, and the existence of two 
distinct homomorphisms would contradict this. By looking at multi­
plicities it follows that qp3 0 cp2 is non-zero and, moreover, is the unique 
such. However, qp3 0 <p2 0 cpi is zero. To wit, V(_3 _4 _5 _5) does not occur 
in ?/(p ’) ® and thus there can be no non-zero homomor­
phism at this level.

1.4. Conformal covariance
Given a generalized highest weight module M(VX), Bernstein, Gelfand, 
and Gelfand [B,G,&G] gives the highest weights of the fe-types that may 
possibly be annihilated by p+ and thus define homomorphisms into 
M(Vt). As described in the previous section, the results of [JV] are quite 
useful in the description of the set of homomorphisms; indeed, in many 
cases it yields directly the full set. However, there are some complicated 
situations, e.g. those in which one (or several) of the »BGG fe-types« 
occurs with multiplicity greater than one. We believe that there is a 
principle which can handle those situations, and whose applicability goes 
even further. It should be noted that there are no examples of multiplici­
ty greater than one in the sets of homomorphisms as above. The princi­
ple in its mildest formulation states (tube domain case) that only for very 
special A0's can it happen that a fe-type p G M(VT) of the form p = u-q 
with q E. M(Vt) and u G^/(p_)fcl is annihilated by p + . Actually, this princi­
ple was the main motivation behind the results in [JV].

We will now furnish an example based on the Lie algebra su(2,2) of the 
conformal group. Here the formulation is quite precise and may in fact
be proved to be sufficient to determine the full set of conformally
covariant differential operators. Let

i-i 32 a2 a2 a2n — at2 3x2 3y2 8z2
Consider those covariants that operate on spin (-ÿ, ±):

Proposition 1.4.1. The only covariant differential operators that contain  
(to some power) as a factor are those that intertwine spin (•£, ±) with spin (%, ±); 
n=0,l,2,... .

The proof of this proposition will appear elsewhere. The situations cor­
responding to n=0 and n=l are described in [J&V;I].

Let else2, and e3 denote the standard orthonormal basis of [R3. Then
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At = {(e2-e3),(e2+e3)} , and
At = {ß = (ei~e2), «i = (ei-e3), cx2 = (ej + e^, yr = (ei+e2)}

(su(2,2) is of type A3) . A = (X(,X2,X3) is fci-dominant and integral if and 
only if X2 ± X3 G {0,1,...}, and Q — (2,1,0). For a G A we denote the 
reflexion corresponding to a by Sa. We label, for convenience, the 
homomorphisms by a sequence of reflexions involved in the corre­
sponding »condition (A)«.

Example. A = (X,l,l) (X G IR).

At Â = —3, SYr satisfies »condition (A)« but SY (A+q) —ç does not 
correspond to an element of p“ ® VT.

At Â = —2, SY and SY Sa7 are ruled out for the same reason, but SQi 
defines a first order covariant differential operator.

At Â = — 1, the situation is similar to X = —2; the only difference is that 
Sa here gives an operator of order 2.

At Â = 0, Sa]Sai corresponds to the situation in Proposition 1.4.1 and is, 
moreover, the only sequence which corresponds to an element of the 
module.

At ÂG IN, Sp, S(X|Sao, and S^S^Sß correspond to elements of the module, 
However, due to the principle, only Sß and Sa|Sao survive.

2. Irreducible mixtures of unitarizable modules

Consider the following very general situation: One is given two groups, 
G] and G2, a family (IIa, Va)aeA of representations LIa of Gî on spaces Va, 
and a representation Jtm of G2 on V = Va. Let us insist that A contains 

aGA
more than one element and assume that it makes sense to inquire about 
irreducibility or indecomposability. One may then talk about V having 
one of these properties with respect to either G2 or G]XG2, and one may 
say that G2 makes V into an irreducible or indecomposable module of 
G]-representations, respectively. Naturally, additional assumptions 
about the representations may be inserted, e.g. unitarity.

Let us from now on restrict ourselves to the case in which Gt is 
isomorphic to a subgroup Gj of G2 and assume that the representations 
of Gi are irreducible. Those representations of Chapter 1 that have in­
variant subspaces defined by covariant differential operators, furnish 
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examples for which Gi = G2 and A is finite. In these cases, the represen­
tation of G2 is never unitary. On the other hand one may take a unitary 
irreducible representation of G2 and restrict it to G1? but this, especially 
when Gt is non-compact, tends to give sets A which are uncountable.

Below we present, through some simple examples, two different cir­
cumstances under which one in a natural way gets irreducible mixtures 
of unitary representations, and where A is countable. In both examples 
G[ may be taken to be equal to G2 and in the first example, A is in fact 
finite.

2.1. Representations which do not remain irreducible when restricted to the 
extended Poincaré group.
The general situation is the following: G2 is (a covering group of) a 
group of holomorphic transformations of an irreducible hermitian sym­
metric space Q) of the non-compact type. Assume for simplicity that 
is of tube type; Çiï = (Rn + iV for an open convex cone V G (Rn. Let P 
be the maximal parabolic subgroup of G2 which contains the translations 
LXo(x+iv) = x + x0 + iv of for all x0 G IRn. Consider an irreducible 
unitary representation JTm of G2 on a space of vector valued holomorphic 
functions on SL Then JTm|p = © JTi m P for some N G N, with jri m P ir­
reducible and unitary for all i=l,...,N. In some special cases, N = l, and 
for some of the most singular of these, the representation remains ir­
reducible when restricted to a normal subgroup Po of P for which P/Po is 
isomorphic to the one-dimensional center of the reductive (linear) part of 
P. (Cf. below.)

The decomposition of the restriction of JTm to P is handled by im­
bedding Jtm into a degenerate principal series representation, and this is 
accomplished by taking boundary values on the Shilov boundary of 
Pf- lim f(x+iv) (which exists at least on a dense set of functions). See 
QJV;I] for an example. Furthermore, each representation Ttj m P is recog­
nized as the restriction of an irreducible unitary holomorphic representa­
tion of G2 to P. We denote the last group by Gj since is should really be 
thought of as distinct (in fact, Gi Pl G2 — P); and thus get the promised 
phenomenon. One interesting question to which we do not know the 
answer is: How big is the group generated by Gi and G2; does it have a 
geometric interpretation?

Let us now be specific: In the following formulas, the letters 
a,b,c,d,x,y,z, and w denote 2x2 complex matrices. Moreover, in the 
following definitions, 0 is the trivial 2x2 matrix, and 1 is the identity.
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G2 = SU(2,2) = {g = (c bd) I det g = 1 and g*(_?  o)g = (-? i)}- 
P = <g = (o a->) | det a E IR \ {0}, and x = x*).

= {z | (z-z*)/2i  is strictly positive definete) (2.1.1)
= IR 4 + iC+,

where C+ ={y|y = y*,  tr y > 0 , and det y > 0}.

P is isomorphic to a 2-fold covering of the extended Poincaré group. The 
title of this section is motivated by [M&T], this investigation being 
complementary to that.

On the space of holomorphic functions on with values in C2xC2 we 
consider the one-parameter family of representations U, of G2 given by

(Uj(g)f) (z) = det (cz + d) j(cz+d) 1 ® (zc*  + d*)f(g  !z) (2.1.2)

forg-1 = 0 a) E SU(2,2), g_1z = (az + b) (cz + d)“1, andj E 7L. It follows 
from [JI, p. 324] that there exists a K > 0, independent ofj, such that the 
reproducing kernel Kj(z,w), which is given by

Kj(z,w) = det (z—w*)/2i) “J ((z —w*)/i) -1 ® ((z-w*)/i),  (2.1.3) 

may be written, for j > 3, as

Kj(z,w) = K • fc+ eltr(zw)FJ(y)dy (2.1.4)

with Fj(y) = det yJ“3[y®y+(j —2)“1 dety-T] ; y being the matrix for 
which y-y = det y and T being the matrix which, in a basis fi,f2,f3,f4 of C4

C2 
® C2 satisfying that f[,f2,f3 corresponds to the symmetric subspace and 
f4 to the antisymmetric, is the diagonal matrix T = d(l,l,l,-l). T then 
satisfies that T(a®b) — (b®a)T for all a and b. For details about reproduc­
ing kernels we refer to R&V;I]. It is the positive - definiteness of F, forj > 
3 (for j = 3 only semi-definiteness) that implies the unitarity of the 
representations Uj forj > 3. Let us from now on assume thatj > 4. The 
Hilbert space then consists of functions of the form

Fr(z) = L> eltr2yf(y)dy (2.1.5)

and the inner product is given by

<Ffl,Ff2> = fo<FT' (y)fi(y),f2(y) > dy. (2.1.6)
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The subgroup of SU(2,2) whose elements are of the form

g = (o å*->)  (the linear part of P) acts as

(Uj(g)Ff) (z) = Jc+ eltrzy (a* _1®a)deta4_j f(a*ya)dy.  (2.1.7)

To make the decomposition under P straightforward, we would like the 
action on functions on C+ to be det a2_J (a®a)f(a*ya),  which is unitary in 
the inner product

<f],f2> = <Gj(y)fi(y),f2(y) > dy, (2.1.8)

with Gj(y) = (y®y) (det y)“L Thus, we seek an intertwining operator of 
the form: multiplication by a matrix Mj(y) which satisfies that Mj(a*ya)  
= (a®a)-1Mj(y) (a* _1®a) for all a and all y E C+. This property is 
satisfied by any Mß (y) = (1+ßT) (y®l), and it is sufficient to consider 
this family. To wit, the additional requirement of unitarity; that Mß(y) • 
Gj(y) • Mß(y) = c-Fj^y) for some c > 0, is satisfied provided that 
ß2+ß(j—2) + l = 0 and (ß2+l) (j —2) + ß > 0, and this has a solution when 
J — 4.

We observe that the representations of G] which we obtain are

(Uij(g)f) (z) = det(cz+d)_j-2(zc*+d*)® s(zc*+d*)f(g _1z) (2.1.9)

and
(U2,j(g)f) (z) = det(cz+d)_J_1f(g_1z), (2.1.10)

for g“1 — (c a), and functions with values in C2 ®s C2 and C2 ®a C2, 
respectively.

Transformed back to the space of C2 ® C2 -valued holomorphic func­
tions on 3 the intertwining operator is

(1+ßT) (c(lD) ® 1), (2.1.11)

c(rD) being »one-half« of the Dirac operator as in [J I], Since any function 
f: 3 —-> C4 can be written as a sum of functions of the form f, ® vi} with fp 
3 C2 and v, E C2 (i < 2), we may apply the covariance property of 
eCD) ([JI]):

Let dV0 denote the representation of su(2,2) corresponding to the ac­
tion (g-f) (z) = f(g_1z), let dUj be the representation corresponding to Uj, 
and consider e.g. x — _q) in su(2,2) (x = x*).  Then

dUj(x) = j tr xz + xz®l — l®zx + dV0(x) (2.1.12)
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and

(c('D)®l) (dUj(x)) = ~ (2.1.13)
(c(rD)®l) (tr xz + xz®l + dVo (x) + (j — 1) tr xz — l®zx) = 
((j + 2) tr xz — zx®l — l®zx + dV0 (x)) (c(lD)®l) + 
(c(cD)®l) [ (j — 1) tr xz — l®zx] ,

where the last term means c(rD)®l acting on [...]. We recognize here 
((j + 2) tr xz - zx®l - l®zx + dV0 (x)) as the infinitesimal action 
corresponding to the representation (U(g)f)(z) = det(cz + d)^J_2(zc*  + d*)  
® (zc*  + d*)f(g _1z). To make the computation complete we should of 
course introduce the inverse to c(rD)®l, and this can only be done by 
returning by the Fourier-Laplace transform to the space of functions on 
C+ on which this makes sense. Let us also remark that instead of using a 
decomposition based on a ® a we might as well have used one based on 
a* -1 ® a* -1. Then we would have obtained representations involving 
(cz+d)-’ ® (cz+d)-1.

We conclude this section by a brief description of the situation when j 
= 3. Let V4 denote the representation on C-valued functions given by

(V4(g)f) (z) = (cz+d)-4f(g-1z). (2.1.14)

Then there exists a first order constant coefficient differential operator D 
such that for all g G SU(2,2):

V4(g)D = DU3(g). (2.1.15)

U3 is unitary and irreducible on the kernel of D (inside the space of 
holomorphic functions) and so is the restriction to P. V4 is unitary and 
irreducible on SU(2,2) as well as on P.

We finally mention that there is a non-linear equation left invariant by 
U3. Unlike a similar construction for spin '/a given by 13. Ørsted and the 
author, independently, this equation may be taken to be holomorphic:

Let <.,.> be a complex bilinear form on C2 ® C2. Consider the 2x2 
complex matrix m = o)- Then for all 2x2 complex matrices a,
mam-1 = t’a. For any c G C the equation

Df — c((m®m)f,f)% (2.1.16)

is then invariant, as is straightforward to see (det(cz + d) = det(zc*  + d*)).
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2.2. Mixings resulting from compatible imbeddings.
Let 3) be a bounded homogeneous domain in Cn containing the origin 0, 
let G be a group of holomorphic transformations of G, K the subgroup 
of G that fixes 0, and assume that 3 is homogeneous with respect to G 
(25 ~ G/K). We will say that we have a compatible imbedding of a 
hermitian symmetric space 3 j, (of the non-compact type) into ÇL' if there 
is a complex submanifold 25 ls of 25 containing (for convenience) 0 such 
that 251 and 251>s are bi-holomorphically equivalent and such that 25 ls is 
homogeneous with respect to the subgroup Gj of G that leaves 25 
invariant. We let K] = K A Gj.

Let T be a unitary representation of K on a finite dimensional vector 
space VT and assume that the representation UT of G, obtained from t 
through holomorphic induction, is unitary in a Hilbert space HT of VT- 
valued holomorphic functions on 2. As described in [J&V;II], the de­
composition of the restriction of UT to Gj can be obtained from the 
filtration of HT defined by the order of vanishing on 25 ls. As a result one 
gets

Ht = © Ht
i=i

and
00

UT = © UT
i=l

where the U/s are unitary representations of G| obtained through 
holomorphic induction of finite-dimensional unitary representations T; of 
Kp There may be multiplicities (always finite) and the sum is always at 
most countable. Evidently, the elements of G outside of G] will mix up, 
through the representation UT, the spaces HT. Thus, it is natural to look 
for another copy of G! inside G. This copy does not necessarily have to 
be of the same nature, i.e. the direct inclusion of SO(4,2) into SU(4,2) 
does not correspond to a compatible imbedding, but for now we will 
assume that it is. Even then, the two copies do not have to be conjugate 
inside G. For instance, if 25 = 253 X253 then there are at least three 
interesting and isomorphic submanifolds, namely 253x{0} , {0}x253 , 
and the diagonal in 3) , and the corresponding groups are not conjugate. 
We shall not discuss questions concerning irreducibility here since it is 
quite clear how such questions should be approached. Rather, we con­
clude this general discussion with the remark that a Kj-type in a fixed 
Ht , under the action of K, will only travel into a finite number of other 
HT's. This is clear from the decomposition.
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Let us give a simple example: Let {e1,e2,e3,e4,e5} be a standard basis of 
C5 and let SU(2,3) be the group of linear transformations of C° that leaves 
invariant the sesquilinear form which, in the given basis, is defined by 
the diagonal matrix d(l,1,-1,-1,-1). We have that K = { (u,v) G 
U(2)xU(3) I detu-detv=l}. As G] we take SU(2,2). Copy no. 1 is taken 
to be the subgroup defined by (e1?e2,e3,e4) and copy no. 2 to be the one 
defined by (ei,e2,e4,e5), though for some purposes it might be more 
natural to take a more twisted version as copy no. 2. We shall here be 
content to give the decomposition of some representations of SU(2,3) 
under copy no. 1. We let z denote a complex matrix with 2 rows and 3 
columns; the space corresponding to SU(2,3) may be taken to be a 
bounded subset containing the origin, of the vector space of all such 
matrices.

Our first example is with t(u,v) = dctu". The corresponding repre­
sentation is denoted by Un. Restricted to K it has the form

(Un(u,v)f) (z) = detu-nf(u-1zv). (2.2.1)

For n G N, Un is unitary. The decomposition is obtained by expanding 
functions in the variables corresponding to the 3rd column. The set of 
t/s is then equal to {detu~n ® u | j = 0,1,2,...}. This is the case even for 
n = 1, where the representation space is annihilated by a second order 
differential operator. The reason is that this operator does not contain a 
summand which is purely a differential operator in the variables corre­
sponding to the 3rd column.

Our second, and final, example is with T = u(detu)_n; the correspond­
ing representation UT is denoted by Vn. Restricted to K, Vn has the form

(Vn(u,v)f) (z) = u detu_nf(u_1zv), (2.2.2)

where now f takes values in C2. For n > 2, Vn is unitary. For n > 2 the set 
of Ti's is (detu_n J® u | j = 1,2,...} U {dctu_n+1 J® u | j =0,1,2,...}, 
but for n = 2, where the representation space is annihilated by a first 
order (matrix valued) differential operator, we only get {detu_n ® u | 
J = l,2,...}.
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